LEGIBILITY NOTICE_

A major purpose of the
Technical Information Center is to
provide the broadest dissemination
possible of information contained in
DOE’'s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although portions of this report
are not reproducible, it is being
made available in microfiche to
facilitate the availability of those
parts of the document which are
legible.

3



y=MeUHN -Hi-0b4

/’: - v [ “d éﬁ

oS Adeeny Nat-ung! Laboratory 18 operaied by tre -Jnuversily of (alhhrna or the united States Departmeni of Enerygy under tont gt W "doh E e in

TITLe HIGH-ENERGY LASER-ASSISTE™ IMAGING THRCUGH VAPORIZING ARROSOLS

LA-UR--88-669

DESBS8 007911
AUTHORS) A. ZARDECKI, T-DOT

S.A.W. GERSTL, T-DhOT

cupMittEp to FOR PRESENTSTLON AT CTHE SPITE AR TECHNITCAL SYMPOSTUM O8N oPTIesS,
ORLANDO | ¥L/ 0 APRIT A-R, O8N AND TO B OINCLUDED N CTHE PRoc, o
THIS MEETIN

DISCLAIMER

Thaes report wan prepated as an account of wark sponsored by apone ol e T onted Sates
Chwvernmenmt  Nether the U mited SEtes Conormment oo iy geemeys trcal a0y of ther
rmplosees mabes oy warnanty expres op mphed 0 e any G G e s tespeonse

bihty bt the oou ey completeness ot gatulness 1o mbornate s g prwfin s
e B hmod o reprewents that ate e v L b s 0 L A vl Hele
ctiee horem to oo et ool proal e e v L B aoulvinark
manotetoerr o therwrs oy ol e - o 0 0 o ml o el oo
FEBRRUARY 190K mepddem o ey by the Danted vt aaveneeoet g o, .o The vie ws

amd cpuons ol wthor capressed hetom o el e i [ vt ol e
Fmted States Gaovernnmu pt oe any apency Thetenl
T R B R L L L L T R T o PP A T LA Pty Py e S S

g gt LI N L I I ELIL TR T PR S LA TP A o - 0o " wooninmmnl pgrgnoam oy

g A 0 Tl g oaab oy g rEMpgET s g e et E TN e PR LTI TTL I PR TR el T et

L Al Nation: IL.l :
1 0S AlEIrNOS LosaumosNatoniLaborory

TP S i


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


926 19

High-energy laser-assisted imaging through vaporizing aerosols
A. Zardecki and 5. A. W. Gerstl

Theoretical Division, Los Alamos National Laboratory
Mail Stop K723, Los Alamos, NM 87545

ABSTRACT

The degradation of image quality due to multiple scattering in a turbid medium is analyzed under various
conditions of illumipation. The emphasis is on the forward-peaked multiple scattering effects, which can adequately
be described by the small-angle approximation. In the case of incoherent illumination, the modulation transfer
function (MTF) can be given explicitly both in the low- and high-frequency limits. For scattering with smaller
degree of anisotropy, the MTF should be computed numerically by considering solutions to the equation of radiative
transfer with a line or point source. As the beam power increases, the turbid riedium becomes modified by its
interactions with the beam, thus affecting the image resolution. In this nonlinear transport regime (flux levels of the
order of 108 W/cm? and higher) the propagation leads actually to beam narrowing. In the context of the imaging
problem, an apparent paradoxical cituaticn—in which the image of a point source narrows down as the high-energy
laser (HEL) beam propagates—is discuased.

1. INTRODVUCTION

If a laser beam is used to illuminate an object, the radiation in the :inage plane is perturbed by an interposed
medium, e.g. haze, smoke, or water cloud. For linear turbid media, encountered in the propagation of solar radiation
and low-encrgy laser beams, the degradsation of image quality can be analyzed within the framework of the small-
angle approximation,'~3 the diffusion approximation,* or a rigorous two-dimensional radiative transfer equation.’
These tiaree approaches allow us to highlight different aspects of the imaging problem when multiple scattering effects
are important.®

Experimental evidence, as shown by Kopeika’-® and Kuga and Ishimaru,?3 indicates that—in addition to
turbulence—the multiple scattering from discrete particles seriously limits imege resolution. If parti:les are larger
than or comparable to the wavelength of radiation, the use of the small-angle approximation leads to extension of
earlier classic results to a wider class of ficlc 1 satisfying a factorization condition.!® These are, in general, the partially
coherent radiation fields. Ie thc incoherent illumination limit, the MTF can be derived in a closed form, provided
the scattering phase function is forward peaked. Otherwise, with the aid of a solution to the equation of radiative
transfsr corresponding to an isotrcpic. line scurce, the MTF is computed numerically.

Performance of tracking sysiems has explicitly been associated with the properties of target signatures,'' and
irnplicitly sith the properties of the intervening medium. For HEL beams, the scattering and absorption cross
sect:ons of the medium vary with the value of the radiation flux; the beam propagation becomes nonlinear. If the
irradiance does not exceed a dux density of 10%-10® W/cm,? the power loss of the beam is controlled by the process
of aerosol vaporization. The coupled aerosol-beam equations, in which the dominant interactions are diffusive mass
transport ard conductive energy transport, sre solved numerically to obtain the spatio-temporal beha  wor of the
propagating heam and irradiated aetosols. The spatial broadening of a localized laser disturbance allows us to study
the noniineaz response function of the irradiated medium when the information 1s transmitted from the object to the
image plane [n the frequency domain, » quantity analogous to the MTF is obtained. Interestingly, in the limt of
[rnear interactions. the MTF of the wcoherent illumination 18 recovered. The point spread function shows less and
less broadening as tue laser energ, increases, the process we term HEL-asmsted imaging. If aerosol clond clearing
occurs, essentially no spatial frequencies are lost 1n the image plane.
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2. CONDITIONS OF ILLUMINATION
Let a beam of light propagate along the positive direction of the z-axis, with the space between the object plane
and the image plane filled by a turbid medium. To specify the location in the plane : = const, we use together
with variables p, and p; the central p. = (p1 + p2)/2 and difference py = p — py variables. If u(p,:) is a complex
function representing the disturbance of an electromagnetic field in the scalar approximaticn and [(p, z, ¢) denotes

the radiance distribution function, then the mutual coherence function ['(py, p2,2) =< u(py, T)u*(p2, z) > is related
to I by!?

Mprpnc) = [ 10p.z,8lezplie - pa)d's, (1)
where k i3 the wave number of radiation.

Equation (1) implies that the incoherent mutual coherence function I'(py,pz,2) = (4x2/k¥)1(py, 2)6(p1 — p2)
corresponds to the isotropic radiance [(p, z,¢) = I{p., z). On the other hand, the Gaussian distribution function

Io(pe,®) = (827 x%)ezpi=3%0* — v2p.%), (2)

-

in the plane z = ), corresponds to the coherent illumination; the mutual coherent function ['(py.r2) factorizes i we

identify ¥ with k/3.
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In the next section. we eecall the formula for the MTFE corresponding to the incoherent, Jelta coreelated sadiation
firld



S 10 p——— . —
(g
EG )
< C =010
S o8 ALBEDO -
= o =010
o =040
E.fi a=070 ‘
&‘ 06 + = 100 .
%)
z .
<
[0 o
—~ 04}
>
—
— i
02
3
b | 1
a
g 00
00 10 20 30 40 50 60

SPATIAL FREQUENCY (CYCLES/RAD)

Figure 2. MTF as computed with TWOTRAN code. Asymmetry factor g = 0.1,
r=1.

3. MTF FOR THE LINEAR MEDIUM

When particle size is much greater than a wavelength, the wave scattered by particle is largely confined within
a small angle in the forward direction, resulting in the simplification of the propagation laws {or the radiance and
mutual coherence function. We ass'ime the homogenrous medium to be specified by the volume exinction and
scattering coefficients, ¢, and o,, and the single scattering phave function, taken for convenience'? as a (iaussian
function with the pa- ameter a:

a’ 2,2
p(¢) = TOtp(-a ¢%). (1)

I'nder the sinall angle-approximation, the propagation law for the mutual coherence function, combined with the
condition of 1soplanatism, leads to the M'(F of the torm

g,

M) = r,tp[a.,: -0z + 'Zﬁferf(

L’-)] ‘1
(4

Here the spatial fraquency f s expressed in cycles per radian of field of view, 7, = o, — a,, and rrf denntes the
standard ereor function. A= illustrated in Fig. 1, in which the MTF 18 shown tor different single scattering albedos
« = o,/ Eq (4) predicts coreectly the Gaussian roll off for low spatial frequencies, and the leveling of the MTF
W[ — ~ [he MTF rolls off at spatial frequency f, = (a/#)(3/7,)"/?. where r = @,z 18 the optical depth. whereas
s, = @,z s the scattering optical depth. For moderate values of r, and o, f, can be quite small, reaching 4 few
sveles per tadian Provided a good Airy pattern can be obtained, this does not imply, however, the deterioration o
the image
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When the scattering becomes isotropic, the forward scattering approximction breaks down, and one is forced
to seek numerical solutions to the imaging problem. This has been done in the past both by applying the rigorous
equation of transfer (only 2-D algorithms are of practical value) and by employing the diffusion approximation. Figure
2 shows the MTF computed with the aid of the TWOTRAN transport code,® in which the radiation from a line
source propagates through a nearly isotropic medium, with the asymmetry factor (average cosine of the scattering
angle) ¢ = 0.1. In this regime, especially for .- < 0.8, the radiative transport approach seems to be the only feasible
tool of computing the MTF.

4. IMAGING THROUGH THE NONLINEAR MEDIUM
The time-dependent radiative transfer equation, written in the small-angle approximation, has the forr.

8
(Z 46 3 +0)(p.50.) =0, [ (6= )(p,2. 8,008 %)
dz dp

In Eq. (5), t' =t — z/c is the retarded time; the properties of the medium will, in general, be dependent on space
and time.

GAUSSIAN PULSE
Flx = 200E04 Wem ™

t, = 1.00E-04 sec
Z = Om

Figurs 3. Fuactional shape of the laser pulse in the input plane, : = 0. The
independent var:ables are time ¢ and radial distance r from the beam axis; the
latter '3 denoted p in the text Peak power Fyax = 2x10* W/em?

['he solution algaeithm for kg, (5) 18 given in Ref. 14, For the sake of completeness, we provide the fieal formulag
for the faser Bux (itradiance) in the case where the phase function i1s described by Fq (3) and where the pulse profile
at 2 = 0 factorr »8
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I{p,z=0,0,t) = Ih(p, &)T(1), (6)
where the prime over t nas been dropped. The small-angle approximation irradiance

Flp,z,7)= /I(p.z.¢.r)d2¢ (7)

is obtained by successively applying the formula

Flpyz+ A1) = @r)? ezxp[-ai(z, T)A) /G(P —p 5 rF(p 2 m)d?p (8)

Here A is a propagation distance satisfying the condition ¢,A <€ 1, and the propagation kernel G is Hefined as

Glo.z.7) = ~[K™"ezp(=p?/K) + o, AL ezp(~p?/L)] (9)

the parameters K and L are expressed in terms of a, the inverse angular spread of the phase function, and 3, the
inverse angular spread of the beam,'* as

K(z) = 2:A/8%, (10)

L(z) = 2:A/8% + A?/a®. (11)

In actual computations, the algorithm is further improved if we let the values of #,, o¢. and a be induced by

the spatial beam profile. We note that Eqs. (10) and (11) simplify in the limit of a collimated beam, when 3 — 0.

In the remaining part of this section, we sketch the derivation of the response to a spatially narrow collimated beam,

assuming the limiting case of constant medium parameters. This assumption will be valid only when the incident
be: m is of sufficiently low flux, i.e. when the propagation is linear.

The irradiance distribution function in the input (object) plane corresponding to the radiance Iy given by Eq. (2)

It
)
I(p,t) = T(t)—ezp(=~"p?). (12)
We now divide the scattering medium into infinitesimal slabs, each of width A®) k = 1,2,..., at z;, and apply

succesively Eq. (8) to propagate radiaticn over the extent of each slab. For homogeneous medium, A in Eq. (10)
may be replaced by :, leading tc

2 1 "
I(p,z.t) = T(t)[%—ezp(—'r?p’) + - En2ezp(—7.2p7)a,A“"]e:p(—a.A“”), (13)
'
whete
2
vl s — r__ (I

Tl yind/a?
[n the (spatial) frequency domain, the Fourier transform theorem yields

f1?

{al

. I .

I(£,2.) = T(D)ezp(=375) (1 + 3 ezp(- )7, AW S exp(-a A, (15)
x X

When the expression in square brackets in Eq. (15) is replaced by an exponentiai, and the summation 13 converted

to integration, we obtain

. 2
If) =T(¢)€¢P(-£—,)M(/). (16)

with M(f) given by Eq. (4). We see that although the laser beam corresponds to the coherent tlunmination, the
propagation of irradiance 18 still described in terma of the MTF of the incoherent illurmnation, provided that the
parameters of the medinm Jdo not chanze. For higher fluxes, we solve numerically our propagation algonthm, togethes
with appropriate equations for the vaporizing aerosol pariicles.
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Figure 4. Functional shape of the pulse shown in Fig. 3 at a distance z = 2 m.

5. NUMERICAL RESULTS

To illust-ate ihe foregoing considerations, we choose the medium in the form of A 3 m wide slab. initially filled
with a monodisperse collection of 10 um radius water droplets. The concentration of the droplets np = 3.75x10°
em~" corresponds to the ovtical depth » = 8.25 at the laser wavelength A =3.8 um. The laser beam haviug the
initial spot size of 0.2 ¢cm propagates in the form of a pulse of 0.1 msec duration. The two flux levels we consider
are F| = 2.0.c10* W/cm? and F; = 2.0x10° W/cm?; both values define the peak flux at the center of the pulse.
While the former value defines the linear regime, the iatter one leads to nonlinear propagation effects induced by the
vaporization of water droplets. In Figs. 3 and 4, we show the spatio-temporal shape of the pulse for z = 0 (input
piane) and z = 2 m. It is seen that, in addition to the pulse attenuation, there is a spatial broadening produced
by the multiple scattering. To gain a bett. insight into the physics involved here, we show in Fig. 5 the on-axis
pulse attenuation as a function of time and propagation distance. The correspor-ing change in the droplet radius
1s depicted in Fig. 6. Figure 7 shows the Fourier transf-rm of the spatial pulse shape, termed “modulation transfer
function.” for tferent path lengths. We stress that, due to the nonlinear nature of the propagation process, the
resemblance to the MTF of linear optics is only formal. ‘The results of Fig. 7 should be compared to those of Fig. =,
in which the MTF is computed directly from Eq. 4 of Sec. 3

The results of computation in the nonlinear regime ars depict~d 1n Figs. 9-12. As s evident from Figs ' and
10 1 the process of propagation the pulse suffers spatia! narrnwing, accompanied by the punch through otfeet in
appareent viclation of the Beer.Lambert law  Figure 1!, which shows the droplet radius as a function of time and
longitudinal distance, explains the effect in terms of the dropiet vapanzation '* The nonlinear MTFE, shown in big
12, (lustrates A new effect that we teem HEL- assisted anaging The spatial feequency rolls off at much Lareer valies
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GAUSSIAN PULSE
F  =200E04 Wem™

MAX

tP = 1.00E-04 sec

Figure 5. Space-time dependence of beam irradiance on axis for Fprax = 2x10%
W/cm?. The propagation is controlled by the Beer-Lambert law and multiple scat-
tering.

8 compared to the linear regime; this implies that the filtering effect of the medium tends to be quenched. Because
the width of the incident beam decreases as the pulse propagates, the MTF becomes widest for largest path lengths.
This type of a para-dox does not take place when the propagation is linear.
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GAUSSIAN PULSE
F,.« = 200E04 W-em ™

tp = 1.00E—-04 sec

*10‘1

Figure 6. Space-time dependence of the droplet radius on axis for Fasqx = 2x10¢
W/cm?2.

6. CONCLUSIONS

We have analyzed the effects of laser beam propagation on imaging in the cases of linear and nonlinear radiative
transfer. For low-energy beams, when the propagation is linear and the scattering is forward-peaked, the MTF of
the particulate medium has a simple semi-analytic form. As the energy of the beam increases, a host of nonlinear
rffects can accompany the propagation process; the focus in this paper has been on the effect of vaporization. The
nonlinear MTF does aot act as a cutoff filter—the width in the spatial frequency domain far excecds the width
of the linear MTF. In addition, by the very nature of nonlinear propagation, the widest MTF corresponds to the
largest propagation distance, if the high energy beam is used for imaging. The low-energy probe beam, on the other

hand, would propagate through a teneous aerosol cloud, thus experiencing enhanced broadening as the path length
.ncreases.
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Figure 7. MTF computed from the propagation code for different path lengths; the
linear pulse propagation, Fy x = 2x10* W/em?,
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Figure 8. MTF computed from the small-angle approximation formula, Eq. 4. The
phase function parameter a = 16.5 rad~!.
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Figure 9. Functional shape at a distance z = 2 m. The peak power in the input
plane Fypax = 2x10% W/em?,
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Figure 10. Space-time dependence of beam irradiance on axis for Faeax = 2x10°
W/cm?. The propagation is controlled by the punch through effect.
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Figure 11. Space-time dependence of the droplet radius on axis for Faax = 2x108
W/cm?,
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